
HyDE: A Hyper-Display Environment in Mixed and Virtual Reality
and its Application in a Software Development Case Study

Roy Oberhauser, Alexandre Matic, and Camil Pogolski
Computer Science Dept.

Aalen University
Aalen, Germany

email: {roy.oberhauser, camil.pogolski}@hs-aalen.de, alexandre.matic@studmail.hs-aalen.de

Abstract - While Virtual Reality (VR) has been applied to
various domains to provide new visualization and interaction
capabilities, enabling programmers to utilize VR for their
software development and maintenance tasks has been
insufficiently explored. In this paper, we present the Hyper-
Display Environment (HyDE) in the form of a mixed-reality
(HyDE-MR) or virtual reality (HyDE-VR) variant respectively,
which provides simultaneous multiple operating system
window visualization with integrated keyboard/mouse viewing
and interaction using MR or in pure VR via a virtual
keyboard. This paper applies HyDE in a software development
case study as an alternative to typical non-VR Integrated
Development Environments (IDEs), supporting software
engineering tasks with multiple live screens in VR as an
augmented virtuality. The MR solution concept enables
programmers to benefit from VR visualization and virtually
unlimited information displays while supporting their more
natural keyboard interaction for basic code-centric tasks.
Thus, developers can leverage VR paradigms and capabilities
while directly interacting with their favorite tools to develop
and maintain program code. A prototype implementation is
described, with a case study demonstrating its feasibility and
an initial empirical study showing its potential.

Keywords - virtual reality; mixed reality; augmented
virtuality; integrated development environments; software
engineering; computer-aided software engineering;
programming.

I. INTRODUCTION
This paper is an extension of [1], which described our

Mixed-Reality Fly-Thru-Code (MR-FTC) approach for
visualizing software structures in virtual reality (VR) and
supported coding via a virtual tablet and integration of a
mixed-reality (MR) keyboard.

As digitalization sweeps across society, the amount of
program source code created and maintained worldwide is
steadily increasing. Google is said to have at least 2bn lines
of code (LOC) accessed by over 25K developers [2], while
GitHub has over 79m repositories and 28m developers [3]. It
has been estimated that well over a trillion LOC exist with
33bn added annually [4]. This is exacerbated by a limited
supply of programmers and high employee turnover rates for
software companies, e.g., 1.1 years at Google [5]. This has
ramifications on the labor expenses involved in software
development and maintenance. Approximately 75% of
technical software workers are estimated to be doing
maintenance [6]. Moreover, program comprehension may
consume up to 70% of the software engineering (SE) effort

[7]. As an example, the Year 2000 (Y2K) crisis [8] with
global costs of $375-750 billion provided an indicator of the
scale and importance of program comprehension. Activities
involving program comprehension include investigating
functionality, internal structures, dependencies, run-time
interactions, execution patterns, and program utilization;
adding or modifying functionality; assessing the design
quality; and domain understanding of the system [9].

Some of the challenges faced by software developers
who are now more than ever often facing unfamiliar
preexisting codebases are: 1) effectively and efficiently
familiarizing and comprehending the structure and intent of
collaboratively developed code, 2) programming and testing
code changes, and 3) maintaining (debugging, optimizing,
or securing) the code. Yet the tools programmers use to
work with this code have not significantly changed over the
years. The Jolt Productivity Award for 2015 went to an IDE,
the Jetbrains IntelliJ IDEA, and other IDEs, Apple’s Xcode
and Microsoft’s Visual Studio, were finalists [10].
RebelLabs Developer Productivity Report asked what tools
developers most used and 3 IDEs were reported (IDEA,
Eclipse, NetBeans) [11].

Within the scope of developer’s program comprehension
and informational challenges, one could hypothesize that the
simultaneous access to situationally relevant information by
developers is at least in part hampered by current physical
limitations for viewability on computer displays. This can
be observed by the - not infrequent - use of multiple
displays (when space and budget allow), high resolutions
(when visibility allows), and the multiple windows and tabs
open by developers during their tasks, where quick access to
relevant information is critical.

As to possible visual interface solutions, a survey of over
21K developers by SlashData in 2017 showed that 25% of
professional game developers were targeting VR or MR
headsets [12]. That indicates that a growing segment of
software developers are becoming familiar with and have
access to these headsets during development, whereby the
target environment for which the headsets are intended are
gamers and not developers. Thus, it may be viable to instead
leverage the opportunities afforded by VR [13] and MR
interfaces to support and target software developers during
their development and provide more comprehensive
information. However, a peculiarity and challenge regarding
using VR with software developers in contrast to typical VR
users is their affinity to keyboard interfaces when interacting
with program code. This would thus typically require
frequent (un)fastening of the VR headset to view and utilize

195

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the real keyboard - an annoying disruption, visually
disconcerting from the immersion experience, and
inefficient. Alternatively, virtual keyboards would require
selecting one key at a time using the typical VR controllers
(akin to one finger typing) or some unfamiliar spin-dial
approach and would be an inefficient means for code input
for various programmers, since they often require special
characters. While data gloves might become a future
interface alternative for typing, they have not yet become
sufficiently popular.

In our prior work we described our Mixed-Reality Fly-
Thru-Code (MR-FTC) approach [1], which provided an
immersive software structure visualization and fly-thru
experience of code structure dependencies and enabled
programmers to view code and make text changes on a
virtual tablet using MR for keyboard and mouse access. Here
we extend [1] by removing the limitations of the virtual
tablet and focusing on enhancing the informational display
capabilities in the VR environment with a multi-display and
heterogeneous tool source capability while hiding the VR
software structure visualization.

This paper contributes the Hyper-Display Environment
(HyDE) solution concept, and applies it in a case study to
enhance available software developer environment
capabilities by leveraging VR to integrate multiple
information screens in support of software development and
maintenance tasks. As visual IDEs often contain multiple
sub-windows with information, HyDE displays an unlimited
number of operating system (OS) windows that can contain
any tool or information desired. Thus, direct integration
support of various IDEs, tools, and information sources is
enabled as a type of MR projection into the VR environment.
The HyDE-MR variant also integrates real keyboard and
mouse/trackpad; the HyDE-VR variant provides a virtual
keyboard. The solution concept is sufficiently general to be
applicable to any domain desiring simultaneous access to
multiple informational screens.

The paper is organized as follows: the next section
discusses related work; Section III then describes the
solution concept. Section IV provides details about our
prototype implementation of the solution concept. In Section
V, the evaluation, based on a case study, is described, which
is followed by a conclusion.

II. RELATED WORK

Work related to viewing desktop applications in virtual

or immersive environments or using hyper displays includes
VEWL [14], a library for developing applications projecting
windows onto polygons within an immersive virtual
environment and provide additional information and controls
including menus, windows, and buttons. The user’s head and
a wand are tracked. CAVE2 [15] is a cylindrical system of
72 passive stereo LCD panels that provide a 320-degree
panoramic environment for displaying information, either
dedicated to one virtual simulation or having a traditional
tiled display wall enabling users to work with large numbers
of documents at the same time.

Work related to improving IDEs for SE includes IDE++
[16] is an IDE extension framework and interaction monitor
and describes four applications (DevTime, Sage, Proctor,
and Localizer) with the intent to make IDEs more intelligent.
Code Bubbles [17] attempts to improve the IDE user
interface with lightweight editable fragments of code using a
bubble metaphor.

VR-related work in support of SE tasks includes software
visualization such as Imsovision [18], which visualizes
object-oriented software in VR using electromagnetic
sensors attached to shutter glasses and a wand for interaction.
ExplorViz [19] is a JavaScript-based web application that
uses WebVR to support VR exploration of 3D software cities
using Oculus Rift together with Microsoft Kinect for gesture
recognition. These approaches lack the integration of a
keyboard and are thus limited in their ability to support
programming.

With regard to MR and augmented reality (AR) support
for programming tasks, Tangible Windows [20] provides one
open window per tablet and allows the user to switch their
application by switching between tablets. Lee et al. [21]
describe an approach for authoring tangible augmented
reality applications with regard to scenes and object
behaviors within the AR application being built, so that the
development and testing of the application can be done
concurrently and intuitively throughout the development
process. However, integration of AR support for non-AR
software development is not shown. Billinghurst and Kato
[22] show possible concepts for collaboration in VR, but do
not depict a keyboard or show how programming task
support would work. Neumann et al. [23] do not appear to
use VR goggles in augmented reality (AR) for projecting
multiple PC screens. In 3d live [24], users view a two-
dimensional fiducial marker using a video-see-through
augmented reality (AR) interface. Kato and Billinghurst [25]
use optical see-through MR, whereby an AR conferencing
system was developed that allowed virtual images of remote
collaborators to be overlaid on multiple users’ real
environments. Gupta et al. [26] use a tracking framework,
wherein the 3D position of planar pages is monitored as they
are turned back and forth by a user, and data is correctly
warped and projected onto each page at interactive rates. In
each frame, feature points are independently extracted from
the camera and projector images and matched in order to
recover the geometry of the pages in motion. The book can
be loaded with multimedia content, including images,
videos, and volumetric datasets.

Figure 1. Coding with MR view of keyboard and mouse blended in and

scroll bar shown on the virtual tablet.

196

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In our prior MR-FTC approach [1], we visualized
software structures using various metaphors and utilized MR
with a virtual tablet (called the oracle) to view and edit code
for programming tasks, as shown in Figure 1. However, it
was limited in functionality and it was not possible to
integrate and access other heterogeneous tools.

In contrast to the above work, the HyDE approach
leverages VR to enhance simultaneous informational display
viewing and interaction, while also supporting basic
programming and command-line interface tasks by
integrating via MR keyboard and mouse viewing and display
interaction in the VR environment.

III. SOLUTION
Our solution concept is domain independent and can be

applied to various domains. The information screens
displayed are the projections of actual windows from the real
operating system and can thus be seen as a form of MR that
mixes into the VR environment actual window screens, or
more precisely augmented virtuality since the model is
mostly virtual and only a relatively small portion is reality.
We apply our solution here to the SE or software
development area because of its challenges to highlight the
solution’s potential and capabilities. For instance, to support
software developers within the VR environment, our solution
concept has an MR variant for integrating keyboard and
mouse access which can provide enhanced Graphical User
Interface (GUI) and textual interaction for program coding
task support.

A. Conceptual Architecture

The GUI from a PC environment can be incorporated in
the VR environment projected into the VR landscape of VR
goggles or a VR screen (e.g., Google Cardboard) of a VR
user, providing a form of MR. As shown in , the operating
system (OS) environment (e.g., Windows, Linux, or MacOS)
contains various windows or the entire screen of running
processes or applications that are viewable ((A-F)).

The VR Environment can incorporate any number of
virtual displays of any size placed anywhere in VR space
(e.g., a single gigantic virtual display showing all screens (A-
F) as separate windows on it) (n-to-1 relationship);
correlating screens (1-to-1 relationship); or additional
screens that perhaps show historical content or duplicated
content (n-to-m relationship). This permits a user to have
access to many more screens than physically feasible.
Furthermore, various computers limit the number of physical
displays that can be attached.

The mechanism to integrate the content of some subset of
these windows (or full screen) utilizes available screen
capture mechanisms of the operating systems accessed from
within the VR Game Engine ((3)). Screenshots are then
represented in the VR environment as a texture that can be
placed and updated/refreshed (6) on any game object surface,
such as one that looks like a virtual display (A-F in the VR
Environment Display). These screenshot sequences represent
a stream (capture stream) and can be thought to be equivalent
to a video stream. A historical view of older screen point in

time can be displayed by storing the screenshots and
retrieving them (5), permitting time lapse or pausing of
screen content. A separate optional Screen Capture Server
can be used to set the active window to the foreground and
capture the screen (1), and then return it to the background
and pass the captured screen image in a place accessible to
the VR Game Engine (2).

Interaction with the screens in the VR Environment
Display can be supported to effect changes in the PC
Environment by eliciting events (7) such as keyboard or
mouse events via Input Device mechanisms (e.g., a VR
controller, (virtual) keyboard, (virtual) mouse) that can then
be transformed and passed on to the OS window (8) as OS
events. By utilizing remote desktop applications, one can
also view or interact with content across various remote
operating system GUIs or windows from within the VR
environment.

Figure 2. HyDE conceptual architecture.

For the MR variant, a live camera view of the keyboard
and mouse can be integrated into the VR landscape. This
allows the user to determine where their hands and fingers
are relative to the actual hardware. Assuming the subject is
seated, for instance, tilting their head down is interpreted as a
gesture to activate a live webcam on the VR headset,
activating MR mode, similar to the natural head movement
made on a desktop PC to look at the keyboard.

B. Process
As shown in Figure 3, the process used by the solution

approach can involve the following steps.
For the Window Capture Server:

1) Continually iterate over all processes with GUI
windows.

2) Place the window in the foreground.
3) Capture an image of the window using the OS. This

can alternatively be an image capture of the screen and then

197

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cropped to the foreground window. For the special case of
the desktop, the entire screen is captured.

4) Place the image in the image capture stream queue.
This can also be persisted if historical records are desired.

5) Return the foreground window to the background.

Figure 3. HyDE process steps.

The steps involved in the game engine process for
displaying the screen information are as follows:

1) To create a display in VR, a game object is created
and associated to a selected OS window process.

2) In a continual iteration, the texture of any display (a
game object) is replaced by the image from that window’s
capture stream (equivalent to a refresh). As a potential
optimization, if no change to the image is detected, no
update is required. If the stream is paused, no refresh is
invoked. On continuation, either time lapse display
(historical playback) or current (discarding all images
except the latest) are possible. From a persisted capture
stream, any timestamp available can be displayed. This
image is overlaid with the mouse pointer and cursor
position.

The steps involved in the game engine process to support
screen interaction are as follows:

1) For the active display, the associated target OS
window is determined

2) The window is brought to the foreground.
3) The input event (mouse or keyboard) is applied to

this window
4) The window is returned to the background.

The ongoing capturing process takes care of updating the
screen for any resulting changes.

IV. IMPLEMENTATION
A prototype was implemented to determine the feasibility

of the solution approach. The Unity game engine 2017.3.0b9
was utilized for the visualization due to its multi-platform
support, VR integration, and popularity. Blender 2.79 was
used to develop all models. For VR hardware we used HTC

Vive, a room scale VR set with a head-mounted display with
an integrated camera and two wireless handheld controllers
tracked using two 'Lighthouse' base stations.

A. Mixed Reality Variant
For MR, we integrated a live camera view into the VR

landscape via a virtual plane object. For a better picture, a
Logitech C920 webcam with a 1080p resolution was used
instead of the Vive Front camera and a backlit keyboard
Corsair K70 RGB Lux. Figure 4 shows the MR setup.

Figure 4. MR setup.

As shown in Figure 5, this allows the user to determine
where their hands and fingers are relative to the actual
keyboard.

Figure 5. MR, showing real keyboard in cutout of VR desk and displays.

Figure 6 shows a close-up view as to the readability of
the keys on the keyboard, with a part of the monitor shown at
the top (the webcam view could of course be adjusted to not
show the monitor). One advantage of the MR view versus
the VR keyboard variant is that the user can utilize their
favorite keyboard and mouse that they are already
accustomed to.

198

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. HyDE-MR variant closeup view of the keyboard.

To avoid distraction, it can be configured to hide the MR
view as follows: when the VR user tilts their head down, it is
interpreted as a gesture to activate the live webcam on the
VR headset and blend this into the virtual plane object.
When the head is tilted starkly up, MR is deactivated.

B. Virtual Reality Variant
As shown in Figure 7, the HyDE-VR variant avoids MR,

requiring the selection of all key and mouse control inputs on
any screen be done via the VR controllers.

Figure 7. HyDE-VR variant showing a VR (instead of the MR) keyboard.

While data gloves might provide a better option for
typing in VR, they are not yet in widespread use within the
VR community. We thus opted at this time for practical
variants, the MR utilizing any already available keyboard
and mouse or the pure VR variant relying on VR controllers
only.

C. Display Placement and Interaction
The left controller touchpad allows one to move forwards

and backwards (like zoom in or out relative to the displays)
and left and right. The right controller touchpad allows one
to move up or down. The left controller pointer and trigger
can be used to select a display and move it to another
position (swap). By pointing and triggering with the right
controller on a display, one can freeze (unfreeze) it if one
wishes to pause (continue) the capturing (see Figure 8).

Figure 8. HyDE-MR variant showing pause of capture stream.

New displays are created by pressing the ‘+’ button near
the keyboard (see Figure 6 or Figure 7) using the VR
controller laser pointer (seen in Figure 9). Placement of the
displays is as follows: the first display is placed in a fixed
position in front of the keyboard. Further displays are placed
relative to the first, the second and third are placed to the left
and right of the first at a 45° vertical angle. The fourth
through sixth are placed on a second higher row and tilted
forward for a better viewing angle without having to move
the VR camera position. A bottom third row is placed for the
seventh through ninth in a tilted backward manner.

Figure 9. Developer MR desktop setup, with Visual Studio shown on left

virtual display, and Eclipse IDE on right virtual display.

Once the tenth display is reached, a stacking
configuration of rows of three displays is applied with all
rows stacked vertically (no tilting) and the left and right
columns angled at 45° without tilting (see Figure 10). By
moving relative to this stack the view is adjusted to bring the
display of interest up or down and in front to the best
viewing angle.

Arrows along the top edge allow one to scroll through the
circular list of processes to pick the one to show on that
display (see Figure 11). The one to pick is done by pointing
the right controller at the process name text and selecting it
with the trigger (the process name scrolls when the string is
too long for the available space).

As shown in Figure 12, the displays can be closed via an
‘x’ button on their upper right corner.

199

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. HyDE display stacking.

Figure 11. Selecting a process name.

Figure 12. Closeup of a live IDE on virtual display.

Figure 13. HyDE situationally-related multi-area concept.

A new Area (a group of situationally-relevant displays)
can be created by moving sufficiently away from the current
Area and pressing the create display button. Figure 13 shows
two areas. For example, one area could be focused on fixing
a bug from a previous release, while another is focused on
optimizing a performance issue, or another is focused on
developing some new feature

In case the desired process is not yet running, a special
‘null’ process can be selected, which will display the desktop
so the user can start the desired application, at which point
the user can select the process name.

D. Implementation Details
The Server is programmed in C# using .NET 4.7 and

runs on Microsoft Windows. The Server holds all pertinent
information about each running process with an open
window.

Unity acts as a client and binds via TCP-IP with the
Server to retrieve all process information in XML.
Information provided are: process name, process ID,
coordinates of the top left position of the open window,
window width and height (in pixels), and the window handle.
If a process name is selected, the window is captured. If a
window is moved, the handle can be used to determine its
new position.

Capturing of a process window is done by making the
process window the active one (in the foreground) and then
capturing the entire screen and then this image is then
cropped to the known coordinates of the desired window.
This is done to support displaying the cursor. Using a
variable of type CURSERINFO, information about the
cursor position can be retrieved and its position drawn as an
Icon and overlaid on the cropped window picture when a
cursor is in that window. Each captured window is handled
by a separate thread. For each window the mouse cursor is
tracked so it displays the appropriate position for that screen.

V. EVALUATION
The evaluation of the HyDE solution concept consists of

a case study and empirical study in software development.

A. Case Study
In this case study, we take a typical SE maintenance situation
where a software developer is attempting to address a bug
report that is related to a distributed application. Note that we

200

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exemplify this fictional case with analogous screens that do
not directly relate to each other nor show actual bug
information, they are however from actual live screens.

Figure 14. Closeup of a live IDE on virtual display.

Figure 15. Closeup of a live Visual Studio IDE on virtual display.

Figure 16. Closeup of a live Eclipse IDE on virtual display.

Figure 14 shows the bug report information in the Google
Chrome web browser in the center display of the upper row.
Perhaps it is unclear if the .NET client is not making a
network-based Representational State Transfer (REST) call
to the backend Java-based service, or if the service did not
return. For this, related information might be to analyze
certain log files to see if there are any warnings or errors.
Figure 14 shows the bottom left screen with a log file opened
in the Sublime Text editor. The client may have been written
in a Common Language Infrastructure (CLI) language and
for which Visual Studio might be an applicable IDE, shown

in the bottom center display. The documentation for the
backend service web application programming interface
(API) may need to be consulted to familiarize oneself with
the call and parameters specifications, shown in the upper
right display. Debugging of the backend service, which is
written in Java, is done using another IDE, in this case
Eclipse shown on the bottom right display. To actually
monitor the network packets, the Wireshark tool might be
used, shown in the upper left display.

Figure 15 shows a close-up of the Visual Studio IDE,
while Figure 16 shows a close-up of the Eclipse IDE.

B. Empirical Evaluation
For an empirical evaluation, for our experiment design

we chose to compare subject performance for program
debugging tasks using HyDE-MR. The interface type (VR-
based HyDE vs. a non-VR notebook) is an independent
variable and effectiveness and efficiency are dependent
variables. A convenience sample of seven Computer Science
(CS) students and one Information Systems (IS) student, who
were either in their senior year or master students, was
selected with only one unfamiliar with VR. Only one
indicated not personally using a multi-monitor setup.

The experiment was supervised and a brief training to
show how to utilize HyDE functionality was initially given.
Due to only having access to one (heavily shared) VR station
and subject constraints, we chose to create an SE task set that
required a maximum of 60 minutes per subject (30 minutes
maximum in VR) and was basic enough that students across
various semesters could do it. We intentionally injected 8
errors into a webpage consisting of HTML, Cascading Style
Sheets (CSS), and JavaScript errors (e.g., text that indicates
it should be centered but is not). The intended functionality
was documented directly in the webpage and it was up to the
subject to analyze the text and determine if the webpage was
functioning properly for that requirement, and if not, to
indicate that a defect was found and then correct it. One set
of errors were made for normal monitor (non-VR) usage
scenario (see Figure 17), and another set for the VR usage
scenario (see Figure 18). After correction, the non-VR
webpage should like Figure 19 while the VR webpage
should like Figure 20. In the non-VR scenario, the subjects
had access to one display but could use multiple windows. In
the VR scenario, we observed them creating and using 4-5
displays.

Figure 17. For non-VR: webpage with injected defects.

201

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. For VR: webpage with injected defects.

Figure 19. For non-VR: corrected webpage.

Figure 20. For VR: corrected webpage.

We asked them for a self-assessment of their HTML,
CSS, and Java Script competency, the results of which are
shown relative to their performance in Figure 21. To
determine if the task order of VR or non-VR affected the
results distinctly, each subject was randomly assigned to
either begin with VR or with non-VR, and subjects 1, 5, and
8 initially began without VR. The total time needed until
self-indicated completion was measured in seconds, and then
this total duration was divided by the number of errors found
(and corrected) to get an average duration per error for VR
and non-VR separately. This is also shown in Figure 21.
When comparing these average durations with the
competency self-assessment, we see some correlation, with
subject 1 who indicated little to no experience having some
of the longest times, with subject 3 and 5 that have some
experience have the second cluster of longer times, and
subjects 2, 7, and 8 indicating the most competency and
having some of the shortest times. Note that subject 1 was
unfamiliar with VR, and unfamiliarity with this new
environment may also have negatively affected this longest
VR time; some prior training sessions may have reduced the

duration. However, since the same subject is being compared
in the two modes, the subject’s programming and debugging
experience and competency self-assessment should not
significantly impact their own performance relative to
themselves. Rather, the independent variable will likely have
the greater effect.

Figure 21. Competency self-assessment and average defect correction
duration results for each subject in both the VR and non-VR setting.

As to task training or familiarity effects, as seen in Figure
21 the three subjects that began with non-VR tasks (1, 5, and
8) were slower on VR, faster on VR, and equivalently fast
respectively. The other subjects also showed no bias trend
with one or the other always faster. Thus, we conclude that
there is little to no side effect as to task training in their
ability to complete the task faster in the second environment.

TABLE I. HYDE-MR EFFICIENCY AND EFFECTIVENESS IMPROVEMENT
VERSUS NON-VR

Subject Experiencea
HyDE-MR Improvement

Efficiency Effectiveness

1 1 -23% -13%

2 4 -69% 0%

3 2 -154% 0%

4 3 -30% 13%

5 2 60% 0%

6 3 56% 13%

7 4 11% 0%

8 4 -2% 0%

Average -9% 13%

a. Scale of 1-5 (5 best)

Table I shows the performance difference of HyDE-MR
relative to non-VR for the dependent variables efficiency and
effectiveness. On average VR was overall 9% slower (97
seconds) and effectiveness was improved by 13%. However,
these are only slight variations Conceivably this might could
be attributed to the subjects having less total experience in

202

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VR or to the margin of error given the relatively small
population sample size. We also assume that because of the
relatively short sessions of less than 30 minutes, that no
significant performance impacts are attributed to task fatigue.
Subjects 7 and 8 show almost no performance difference
with HyDE, whereas for subjects 5 and 6 performance
improved, and for 1-4 performance was mostly worse.

In the non-VR scenario, the subjects had access to one
display but could use multiple windows. In the VR scenario,
we observed them creating and using 4-5. After completing
the tasks, subjects were debriefed as to how intuitive,
suitable, and enjoyable HyDE was based on a Likert scale of
1 to 5, with 5 being very high and 1 being very low. The
results are shown in Figure 22, where all the results were
either positive or neutral (except one regarding
intuitiveness). This indicates that the HyDE solution
approach had a positive or neutral effect on subjective
factors. None of the subjects reported VR sickness
symptoms, a type of visually-induced motion sickness
exhibiting disorientation [27], despite the inclusion of MR
keyboard and mouse in VR and ongoing multiple display
refresh. We also asked how many VR displays they would
consider utilizing in they were given the opportunity, and
their preference is shown in Figure 23, where we see that
they could see themselves using up to 7 or 9 displays,
whereas for non-VR the majority would use 3 real monitors
if they could. This indicates that the subjects understood the
potential of HyDE. When asked what environment they
preferred, 75% preferred the VR over the classic non-VR
environment (see Figure 24). Even those who preferred the
classic environment liked the HyDE solution concept and
prototype and think it has potential.

Figure 22. Rating given by the number of subjects for intuitiveness,

suitability, and enjoyment of the HyDE prototype.

Figure 23. Preferred number of VR displays.

Figure 24. Subjects’ preferred environment after the experiment.

As to interpreting the results, a convenience sample can
obviously contain a number of biases, including under- or
overrepresentation. The motivation of each individual at any
point in time to find and fix a defect is another unknown
factor, and we provided no reward system which
gamification could induce. The differences observed in
efficiency and effectiveness between HyDE on non-VR are
in our opinion negligible, and we weight their subjective
responses and the 75% preference of VR-based HyDE as an
initial indicator of support for our solution approach or at a
minimum an openness to utilizing VR for software
development tasks. Further investigation is still needed.

VI. CONCLUSION
As VR devices become ubiquitous, it is only a matter of

time before programmers wish to utilize VR capabilities for
their development tasks as well. Our HyDE prototype
demonstrated that the HyDE-VR and HyDE-MR hyper-
display solution approach is feasible and can be a viable
alternative to desktop displays. The HyDE-MR variant
enables touch typing and the use of the mouse for screen
interaction where appropriate, enabling programmers to
interact more naturally for their code-centric programming
tasks in the VR environment while remaining immersed.
They thus can avoid interrupting their VR experience to take
of the goggles and do programming changes and then put the
VR gear on again. The HyDE concept is also generalized
such that it can be applied to various domains beyond
software development requiring simultaneous viewing and/or
interaction of informational screens. The domain software
development was selected to show HyDE's potential in
intensive informational screen settings where software and
tool preferences are non-uniform and support of and access
to a large spectrum of software is imperative.

The evaluation based on a case-study and an empirical
evaluation showed that the effectiveness in finding bugs was
on par (1 bug more for one person), and although the sample
size was small, the average task efficiency in VR was only
slightly worse (-9% or 97 seconds per defect), which can be
considered to be within the margin of error given the
subjects’ first use of this environment, their competency
level for fixing these types of defects, and the sample size.

Future work includes a comprehensive empirical study
including industrial usage, the inclusion of additional
features, and performance optimizations.

203

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES
[1] R. Oberhauser, “Immersive Coding: A Virtual and Mixed

Reality Environment for Programmers,” In: Proceedings of
The Twelfth International Conference on Software
Engineering Advances (ICSEA 2017), IARIA XPS Press,
2017, pp. 250-255.

[2] C. Metz, Google Is 2 Billion Lines of Code—And It’s All in
One Place. http://www.wired.com/2015/09/google-2-billion-
lines-codeand-one-place/ [retrieved 2018.02.28]

[3] GitHub. https://github.com [retrieved 2018.02.28]
[4] G. Booch, "The complexity of programming models,"

Keynote talk at AOSD 2005, Chicago, IL, Mar. 14-18, 2005.
[5] PayScale, Full List of Most and Least Loyal Employees.

http://www.payscale.com/data-packages/employee-
loyalty/full-list [retrieved 2018.02.28]

[6] C. Jones, "The economics of software maintenance in the
twenty first century," Version 3, 2006. [Online]. Available
from: http://www.compaid.com/caiinternet/ezine/capersjones-
maintenance.pdf 2017.02.23

[7] R. Minelli, A. Mocci, and M. Lanza, "I know what you did
last summer: an investigation of how developers spend their
time," Proc. IEEE 23rd International Conference on Program
Comprehension, IEEE Press, 2015, pp. 25-35.

[8] L. Kappelman, "Some strategic Y2K blessings," Software,
IEEE, 17(2), 2000, pp. 42-46.

[9] M.J. Pacione, M. Roper, and M. Wood, “A novel software
visualisation model to support software comprehension,”
Proc. 11th IEEE Working Conference on Reverse
Engineering. IEEE, 2004, pp. 70-79.

[10] Dr. Dobb’s. Jolt Awards 2015: Coding Tools.
http://www.drdobbs.com/joltawards/jolt-awards-2015-coding-
tools/240169420 [retrieved 2018.02.28]

[11] RebelLabs Developer Productivity Report 2017
[12] S. Schuermans, M. Wilcox, L. Hecht, and C. Voskoglou.

Developer Economics: State of the Developer Nation Q3
2017. SlashData, 2017.

[13] J. Steuer, “Defining virtual reality: Dimensions determining
telepresence,” Journal of communication, 42(4), 1992, pp.73-
93.

[14] D. Larimer and and Bowman, “VEWL: A Framework for
Building a Windowing Interface in a Virtual Environment,”
Proc. of Int. Conf. on Human-Computer Interaction Interact
'2003. IOS Press, 2003, pp. 809-812.

[15] A. Febretti et al., “CAVE2: a hybrid reality environment for
immersive simulation and information analysis,” The
Engineering Reality of Virtual Reality, Vol. 8649 [864903].
International Society for Optics and Photonics, 2013.

[16] Z. Gu, D. Schleck, E.T. Barr, and Z. Su, “Capturing and
exploiting IDE interactions,” Proceedings of the 2014 ACM

International Symposium on New Ideas, New Paradigms, and
Reflections on Programming & Software. ACM, 2014, pp.
83-94.

[17] A. Bragdon et al., “Code bubbles: rethinking the user
interface paradigm of integrated development environments,”
Proceedings of the 32nd ACM/IEEE International Conference
on Software Engineering-Volume 1. ACM, 2014, pp. 455-
464.

[18] J. I. Maletic, J. Leigh, and A. Marcus, “Visualizing software
in an immersive virtual reality environment,” 23rd Intl. Conf.
on Softw. Eng. (ICSE 2001) Vol. 1, IEEE, 2001, pp. 12-13.

[19] F. Fittkau, A. Krause, and W. Hasselbring, "Exploring
software cities in virtual reality," IEEE 3rd Working
Conference on Software Visualization (VISSOFT), IEEE,
2015, pp. 130-134.

[20] Diehl, J. and Borchers, J., Tangible Windows. Technical
report, RWTH Aachen University, 2013. URL http://hci.
rwth-aachen. de/diehl.

[21] G.A. Lee, D. Nelles, M. Billinghurst, and G.J.Kim,
"Immersive authoring of tangible augmented reality
applications," Proc. of the 3rd IEEE/ACM international
Symposium on Mixed and Augmented Reality, IEEE
Computer Society, 2004, pp. 172-181.

[22] M. Billinghurst and H. Kato, "Collaborative mixed reality,"
Proc. First International Symposium on Mixed Reality (ISMR
’99), Springer Verlag, 1999, pp. 261-284.

[23] U. Neumann, S. You, J. Hu, B. Jiang, and J.W. Lee,
"Augmented virtual environments (ave): Dynamic fusion of
imagery and 3d models," IEEE Proc. Virtual Reality. IEEE,
2003, pp. 61-67.

[24] S. Prince, A.D. Cheok, F. Farbiz, T. Williamson, N. Johnson,
M. Billinghurst, and H. Kato. "3d live: Real time captured
content for mixed reality," Proc. International Symposium on
Mixed and Augmented Reality (ISMAR 2002). IEEE, 2002,
pp. 7-317.

[25] H. Kato and M. Billinghurst, "Marker tracking and hmd
calibration for a video-based augmented reality conferencing
system," Proc. 2nd IEEE and ACM International Workshop
on Augmented Reality (IWAR'99). IEEE, 1999, pp. 85-94.

[26] Gupta, Shilpi, and Christopher Jaynes. "The universal media
book: tracking and augmenting moving surfaces with
projected information." In Proceedings of the 5th IEEE and
ACM International Symposium on Mixed and Augmented
Reality, pp. 177-180. IEEE Computer Society, 2006.

[27] R.S. Kennedy, K.M. Stanney, and W.P. Dunlap, “Duration
and exposure to virtual environments: sickness curves during
and across sessions,” Presence: Teleoperators & Virtual
Environments, 9(5), 2000, pp. 463-472.

204

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

