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Abstract. Nowadays, businesses with focus on consumer-products are
challenged by short production cycles, high pricing pressure, and the
need to deliver new features and services in a regular interval. Currently,
businesses are tackling these challenges by automating their business pro-
cesses, while yet trying to be flexible by introducing methods for process
variability modeling. However, for larger processes and variability mo-
dels, it becomes difficult to consider, maintain, and optimize all process
variations in the various execution contexts. In software development,
highly agile requirements are usually tackled with a flexible microservice
architecture. Nonetheless, the fast-changing service landscape is often
not fully reflected in the underlying business processes, leading to ineffi-
ciency and loss of profit. With this work, we extend our framework for
process variability modeling with concepts of Microflows, allowing agile
business process modeling and orchestration while utilizing the full flex-
ibility of underlying microservices. In addition, we present a case study,
showing how this approach is used in the context of an IoT application.

Keywords: Business Processes, Workflow Management Systems, Mi-
croservices, Software Product Lines.

1 Introduction

Today’s society is heavily driven by an ever-changing and interconnected world.
Heavily shaped through the digital transformation, new technologies like Inter-
net of Things (IoT) are pushed as a solution for our daily problems. Generally
speaking, IoT refers to the connection of our everyday objects with a network
like the Internet [1]. Each of these devices is equipped with different kinds of
sensors to observe its environment, making the device a smart object. In combi-
nation with embedded systems, IoT promises to increase the quality of our daily
lives by taking over simple tasks like controlling the room temperature or cook-
ing coffee. For businesses, this means that feature-rich systems are demanded by
the customers, with the ability to unlock new services and features on a regular
basis. Consequently, new methods are investigated on how to efficiently model
process and product variability [2].
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Business Process (BP)-oriented organizations are known to perform better
regarding highly flexible demands of the market [2]. A workflow describes the
automation of a BP by applying a set of procedural rules [3]. By using a work-
flow management system (WfMS), workflows are defined, created, and managed.
However, while adaptive WfMS can handle a certain degree of flexibility, they
usually require manual intervention and rework. As such, context-aware BP mo-
deling techniques were introduced to cope with fast changing requirements [4]:
by analyzing the context states of the environment and by mapping the suitable
BPs to their related software systems, flexibility is gained that can then be used
to automatically select, adapt and execute a process variant. Problems of this
approach are that such systems are often developed independently from each
other [2]. Consequently, operating and maintaining these variants can lead to
unnecessary overhead.

Since recent years, software services or microservices are often utilized in soft-
ware development to support a digital automation [5]. As described by Fowler
and Lewis [6], microservices provide an agile and loosely-coupled partitioning of
business capabilities into service implementations. Each service is individually
evolved, deployed, and executed. However, due to the rising number of services
and automation expectations, approaches for a dynamic webservice orchestration
are needed. Service orchestration can be split into: (1) centralized approaches,
e.g., using flow descriptions – and (2) decentralized approaches, e.g., using colla-
borative interaction of services [7]. However, an integration of these approaches
to dynamically plan and invoke processes remains a challenge.

The reuse of software components is an important step for an industrial
company to survive in a flexible and competitive market [8]. By applying a mi-
croservice architecture, the focus on reuse is often lost: teams focus on delivering
work quickly and independently, often avoiding dependencies to other teams or
to shared code that is not maintained by them. However, we think that software
reuse is essential also in the context of webservice development to raise software
quality and to minimize time-to-market. Software Product Lines (SPLs) have
proven to be highly effective in reusing software artifacts [9]. The most critical
phase during the design of an SPL is the identification of the variable parts and
the common parts of a product family [8]. In the context of webservice archi-
tectures, SPL can be beneficial for the implementation of common libraries that
are shared accross different teams, and to define common solution architectu-
res. However, an integrated view on BPs is often missing, leading to inefficient
development overhead [10].

With this work, we focus on extending our framework [11,8,2] with capabili-
ties of Microflows [12] to allow an automatic orchestration of microservices based
on annotated processes. In a nutshell, the annotated process model describes the
pre-conditions and constraints that must be met to execute the process and the
post-conditions that are a consequence of executing the process. Pre-conditions
can be as simple as a specific input parameter, or constraints about the exe-
cution sequence (e.g., before execution of process X or after Y). By applying
our framework for combined variability management, we enforce a strong link
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between the developed software artifacts and the business processes in which
they participate, take full advantage of SPL Engineering techniques for reusing
software artifacts, and enable high variability within workflows.

This work is structured in the following way: we present related work in
Section 2. Section 3 summarizes the basic concepts of SPL Engineering (SPLE),
Business Process Modeling (BPM), as well as Microflows that we have app-
lied in this paper. Section 4 summarizes our approach for combined variability
modeling of business processes and software architectures, and how automated
process orchestration can be applied. In Section 5, we describe how the proposed
framework was applied in the context of an IoT case-study. And finally, Section
6 concludes this work.

2 Related Work

IBM defines a Microflow as short-lived BPEL processes [13]. However, in this
work, we use the definition found in [12], defining it independent of any specific
Business Process Management System (BPMS).

Web-Service composition [14], provides a survey of prototypes and standards
for composition of webservices. Rajasekar et al. [15] presents a technique to
orchestrate microservices based on a distributed event-condition-action rule en-
gine. Rao and Su [16] present a framework for webservice orchestration by using
an explicit composite service.

Traditionally, BP modeling languages do not explicitly support the represen-
tation of families of process variants [17]. As a consequence, a lot of work can be
found which tries to extend traditional process modeling languages with nota-
tions to build adaptable process models. Having such a variability modeling for
BP models builds the foundation of this work. Thus, related work which utilizes
similar modeling concepts is presented in the following:

Derguech [18] presents a framework for the systematic reuse of process mo-
dels. In contrast to this work, it captures the variability of the process model at
the business goal level and describes how to integrate new goals/sub-goals into
the existing data structure. The variability of the process is not addressed in
this work.

Gimenes et al. [19] presents a feature-based approach to support e-contract
negotiation based on webservices (WS). A meta-model for WS-contract repre-
sentation is given and a way is shown how to integrate the variability of these
contracts into the BPs to enable process automation. It does not address the
variability of the BP itself but enables the ability to reuse BPs for different
e-contract negotiations.

While our framework to model process variability reduces the overall process
complexity by splitting up the process into layers with increasing detail, the
PROVOP project [20,21,22] focuses on the concept that variants are derived
from a basic process definition through well-defined change operations (deletion,
addition, moving of model elements, or the adaptation of an element attribute).
In fact, the basic process expresses all possible variants at once.
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The work of Gottschalk et al. [23] presents an approach for the automated
configuration of workflow models within a workflow modeling language. The
term workflow model is used for the specification of a BP, which enables the
execution in an enterprise and WfMS. The approach focuses on the activation
or deactivation of actions and thus is comparable to the PROVOP project for
the workflow model domain.

La Rosa et al. [24] extends the configurable process modeling notation de-
veloped from [23] with notions of roles and objects, providing a way to address
not only the variability of the control-flow of a workflow model but also of the
related resources and responsibilities.

The Common Variability Language (CVL) [25] is a language for specifying
and resolving variability independent from the domain of the application. It
facilitates the specification and resolution of variability over any instance of
any language defined using a MOF-based meta-model. CVL-based variability
modeling in combination with a BP model with an appropriate model transfor-
mation could lead to similar results as presented in this paper.

The work of Zhao and Zou [26] shows a framework for the generation of
software modules based on BPs. They use clustering algorithms to analyze de-
pendencies among data and tasks captured in BPs.

3 Background

This section summarizes the basic concepts of SPLE, BP Modeling, and Mi-
croflows that are applied in this work. This section is based on our previous
publications that form the foundation of this work [11,27,2,12,5].

3.1 Software Product Line Engineering (SPLE)

SPLE applies the concept of product lines to software products. Thus, SPLE
delivers diverse, high-quality software products of a product family in a short
time and at low price [9]. Instead of writing software for every individual system,
SPLE makes use of software components (domain artifacts) which are diversified
and combined in order to generate the final software product. As described in
[9,28], the SPLE can be split into two main phases, the Domain Engineering
and the Application Engineering :

During the domain engineering, the domain is modeled and the variabilities
and the commonalities of the according domain are identified and reflected in
the implemented domain artifacts. Domain artifacts are reusable development
artifacts like the software architecture, or software components and their corre-
sponding unit-tests [9].

In the application engineering phase, the final software products are created
by combining and diversifying the domain artifacts which were implemented in
domain engineering. The main goal of application engineering is to maximize
reuse of domain artifacts. Additionally, implemented logic usually just consists
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of glue-logic between the different domain artifacts, which is often fully genera-
ted. Consequently, the rapid creation of high-quality products can be achieved.
The degree of domain artifact reuse depends to a large extent on the applica-
tion requirements. Hence, a major concern of the application engineering is the
detection of deltas between the application requirements and the available ca-
pabilities of the SPL. During the lifetime of a product line, these deltas often
result in additional domain artifacts which can be reused in future products.

In the context of webservices, SPLE provides capabilities for reusing com-
mon implementations (like user-interfaces, library implementations, and others),
leading to a more robust and mature software base for each service.

3.2 Business Process Modeling

Business Processes (BPs) are a specific sequence of activities or (sub-) processes
which are executed in a dedicated sequence to produce output with value to the
customer [8,29]. In this work, we use the modeling paradigm defined by Oesterle
[30]: The BPs are split-up into different layers until the microscopic level is
reached. This is achieved when all tasks are detailed enough so that they can be
used as work instructions. The top level (macroscopic level) is a highly abstract
description of the overall process, while each subprocess is further described in
lower levels. Consequently, higher levels of the process are usually independent of
the production facility, the infrastructure, and environmental specifics. Thus, the
higher level is more stable with respect to changes and can be reused in different
contexts and production environments. The microscopic levels, however, require
adaptation to be reused in different contexts.

Variability of such process structures can be modeled through a variable pro-
cess structure (i.e. by adding/removing activities in a process) or by replacing
sub-processes with different ones. In the scope of this work, we use BPMN (Bu-
siness Process Model and Notation) [31] as a modeling notation for BPs, but
the general framework is not limited to BPMN as long as the modeling notation
supports concepts like events, activities, responsibilities, data objects (used to
describe inputs and outputs), and control flow elements (to model, e.g., choices
and parallel executions).

3.3 Microflows

A Microflow can be seen as a short-lived process execution, which is defined
by an execution of webservices. The following enumeration lists the important
principles used for modeling and orchestrating Microflows in the context of this
work (for a full list of principals, see [5]):

Microservice Semantic Self-description Principle: A microservice provides
sufficient metadata to support autonomous client invocation.

Client Agent Principle: We chose Belief-Desire-Intention (BDI) agents for
the client realization, were belief is provided via knowledge, desire via goals, and
intention are represented in the resulting workflow.
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Graph of Microservices Principle: microservices / workflow activities are re-
presented as nodes in a graph. Each node is annotated with properties. Edges
depict the directed connections between the nodes.

Microflow as Graph Path Principle: A directed graph of nodes corresponds
to a workflow, and is determined by an algorithm applied to the graph. During
the workflow execution, each node and respectively the underlying microservice
is executed, with inputs and outputs as specified in the annotated microprocess.

Declarative Principle: Any workflow requirement specification take the form
of goal and constraint modeling statements. It contains the starting microservice,
the end microservice, and additional constraints that must be met during the
workflow execution.

Path Weighting Principle: Any edge of the microservice graph can be weig-
hted with a potentially dynamic cost which helps in quantifying and comparing
path alternatives. As such, the navigation from one node to another node can be
dynamically adjusted based on collected process execution data (like response
time).

4 From Adaptive Processes to Orchestrated Microflows

In this section, we give details on how we model variability of BPs, how to
generate BP variants, and how to orchestrate BPs using BDI agents.

4.1 Managing Variability in Business Processes

A detailed description of our framework for modeling variability of BPs and soft-
ware architectures can be found in [2]. In the scope of this work, we will briefly
summarize the concept and present the extensions to the original framework.
The extensions allow a combined variability modeling not only for higher-order
processes, but also for processes which make use of webservices to trigger actual
actions on the systems. Figure 1 shows the overall extended framework. The
original framework consists of two essential parts: The Process Variability Fra-
mework and the Product Software Product Line, while the extended framework
introduced the Microflow Orchestrator.

Process Variability Framework (c.f. [11,27,32]) is a framework used to manage
variability of BPs by applying concepts of SPLE. As such, maintaining and evol-
ving process variants of a family is done by automatically applying changes to
the model. These changes are automatically propagated to all process variants.
By using rich constraint checking engines and code generation methods, it is en-
sured that the generated process variants are consistent. The starting point for
the variability modeling is the process of domain modeling and process-template
creation: during this process, the requirements of the domain are analyzed and
appropriate process templates are created. In addition, variation points (VPs)
are identified and reflected in the variability model. The framework supports
variability management of a whole process hierarchy, starting at the top level
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Fig. 1. Overall framework for combining process variability and product variability
based on [32], extended with runtime service aspects using Microflows.

(macroscopic processes) to the lowest level (microprocesses). On each level, cer-
tain transformations can be applied which are: replacing non-atomic activities /
subprocesses with different ones, adding and removing activities and resequen-
cing process steps.

Product Software Product Line is a SPL which allows configuration and ge-
neration of software products during product order: the variable parts of the
process variants are mapped to the variability model of the product line using
identifiers, ensuring a traceable link between both models. To support the process
of modeling, we have defined mapping rules whereby standard BPMN processes
can be translated into a basic feature model skeleton of the product: activities
are reflected by features, and process inputs are reflected as configuration op-
tions [2]. By analyzing the structure of the process model, the system can also
identify which features are mandatory, which ones are optional, and what basic
constraints are defined between them. In this manner, we have shown in [8] that
product configurations can be automatically generated based on, e.g., an order
defined by the customer.

To summarize, the original framework provides a configurable solution, which
allows the configuration of adaptive BPs, for instance during product order, ba-
sed on customer/stakeholder inputs. In addition, a SPL is automatically confi-
gured using the input configuration of the (order) process, and the final software
products are automatically generated. One limitation of this system is that some
of the actions still required manual interaction, like triggering the source-code
generator, uploading files to a server, etc.

With this work, we want to extend the scope of the framework, in order to
support a WS-oriented business to automatically create and execute Microflows
without the need for manual interaction during the execution. To allow this, we
assume the following:
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– An atomic activity can be modeled as a WS (microservice) call
– A microprocess conists of a sequence of atomic activities.
– A microprocess defines meta-information on how and when it can be trigge-

red (see Section 4.2 for details).
– A Microflow can be modeled as a sequence of microprocess executions.

The concept of microprocesses consisting of multiple microservice executi-
ons is purely used for grouping and modeling purposes (i.e., allowing a single
model to generate multiple WS variants) and could be seen as a smaller Microf-
low. If the provided desire and conditions are met, a Microflow can be created
dynamically on the fly by defining a start condition, an end condition, and ad-
ditional constraints that must be met. In order to support a flexible design of
microprocesses, we apply our Process Variability Framework to model process
variants and to publish them in a repository. By applying the concept of combi-
ned variability modeling, we can generate microservice descriptions which must
be implemented by the developers, while still providing a concept for reusing
shared functionality.

4.2 Orchestration of Microprocesses based on Annotated Process
Models

By using the concept described in Section 4.1, a repository of business microp-
rocesses is generated and available. To support their automated orchestration,
each microprocess is annotated with additional meta-information, allowing an
algorithm to calculate possible paths through the set of available microproces-
ses in order to achieve a defined goal. In this work, we specifically make use
of a shortest path algorithm, but the overall framework is not limited to this
algorithm. The set of annotations required to calculate possible paths can be
summarized as:

– Path weight : The path weight gives an indication on how ”expensive” it is
to execute a specific microprocess. By allowing dynamic path weights (e.g.,
updated due to process execution logs, or different weights based on different
execution environments), it is possible to gain flexibility and increase the
quality of service.

– Constraints: A list of constraints that must be met. Our framework makes
use of the following classes of constraints:
• Input Parameter : Input parameters that are necessary in order to exe-

cute a process. These parameters can either be provided by a client, or
can be the outcome of another microprocess execution.

• Output : The outcome(s) of a process execution. To allow flexible mo-
deling of process executions, it is also possible to define meta-data output
that is only used for planning purposes.

• Before Node: Constraint used to model that specific microprocesses must
be executed before the execution of this microprocess. This can also be
modeled using specific types of input parameter and output values, but
by using the concept of a Before Node, more flexibility is gained.
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• After Node: Constraint used to model that specific microprocesses must
be executed after the execution of this microprocess. Identical to a before
node constraint if defined in reversed order.

• Exclude Node: Constraint to indicate that a specific microprocess must
not be executed at all (neither before, nor after).

In our approach, we do not fully dynamically re-calculate the next node du-
ring process execution. For a simpler and more lightweight framework: we make
use of a planning phase where a BDI agent takes a goal and additional con-
straints to find an appropriate schedule of microprocess executions. Mandatory
constraints for the agent are the selection of the start node, the end node, and
may optionally contain additional microprocesses that must be invoked during
the execution. Only in case where the execution of a microprocess fails, we recal-
culate an alternative path by invoking the planning phase again. By doing this,
we can ensure that at least one valid alternative Microflow path exists which
fulfills the requirements, prior to invoking an error recovery.

In a nutshell, the currently implemented path finding algorithm performs the
following steps: First, it identifies the start node and determines which nodes
can be directly reached while meeting the defined constraints. Secondly, for each
direct connection, the algorithm basically calls itself recursively with the new
node being the start node, and it updates its constraints. The updated con-
straints basically contain the output(s) from the former start node as additional
available input parameter, and a call history containing the start node. This
is necessary to prevent visiting the same node twice. The algorithm continues
by recursively calling itself until a list of possible execution paths are collected.
These paths are then evaluated using the defined path weights and the shortest
one is taken. In case multiple paths converge to the same weight, implementa-
tions can implement various strategies like round-robin, or choosing a random
one.

5 Case Study

For illustration purposes, we look at an exemplary IoT use-case which we are
currently working on with our research partners: In a home automation scenario,
various IoT devices and actuators are installed. The overall concept is illustrated
in Figure 2. Some IoT devices may be installed in a fixed location, with a power
supply, while others may be battery powered and mobile (like a smartphone).
Additionally, devices may be produced by different vendors. From a technical
perspective, each IoT device implements some functionality like reading sensor
values, returning the health status (battery level), and enabling/disabling out-
put ports. Each device is connected either directly, or via a gateway to an IP
network having access to a so-called Service Platform. For this example, we as-
sume that this Service Platform is a local reachable Server in the LAN network.
Specific services can be installed to the Service Platform that can be utilized by
the customer. Each service accesses functionality of the IoT devices and/or the
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actuators. For development purposes, the Service Platform provider (i.e., a com-
pany offering a platform for IoT Services) makes use of our introduced framework
for modeling and implementing small microservices for accessing functionality of
the IoT network. Consequently, a Service Provider does not need to implement
code to access functionality of the linked devices. However, a provided service
uses abstract webservice invocations to get and set information in the IoT net-
work. Consequently, the Service Platform is responsible for WS orchestration
and execution based on the desire and constraints defined by the service.

The Service Platform may provide abstract microservices like readSensor-
Value and setOutputValue, which internally are represented by a sequence of
microservice calls like connect, authenticate, readSensorValue, and setOutput-
Value. Each of these microservices can be implemented in several different ways
depending on the used hardware and supported protocols. For example, if a Ser-
vice Provider implements a service for regulating the room temperature (i.e.,
switching a heating element on or off, depending on the current room tempe-
rature), the service formulates the desire to set the output voltage of an outlet
(setOutputValue), with the constraint of first sensing the room temperature
and afterwards doing some calculation (a micro-service provided by the service
provider).

5.1 Example Microflow: Measuring the room temperature

In the following, we will take a closer look at an example. First, we start with a
simple case: The network consists of identical IoT nodes, having the same capa-
bilities (i.e., each node is equipped with a temperature sensor). All of them are
permanently powered. From a high level perspective, the Service Provider mo-
dels his business process as depicted in Figure 3: In a regular interval, he requests
the current room temperature from the IoT network, decides with a very basic
decision if the temperature is above or below a certain threshold (23◦C), and
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Fig. 3. Business Process for regulating the room temperature (Macroscopic level).

switches the heating system on or off. To keep this example simple, we consider
the room temperature regulation process on the Macroscopic level as a ”normal”
BP, while each sub-process of the BP is modeled as a Microflow. In the follo-
wing, we will take a look at the details of the Measure Temperature microflow.
The microservice database consists of the following microservices which are of
interest:

– Connect: Is an abstract microservice which takes care of connecting to an
IoT device using a protocol that is supported by the device. The actual im-
plementation of this microservice takes care of handling device and protocol
specific aspects.

– Authenticate: Is an abstract microservice which takes care of authentica-
ting the Service Provider to the device. The actual implementation of this
microservice depends on the communication protocol and device capabili-
ties. In the following we group authentication protocols based on symmetric
and asymmetric cryptography.

– Read Temperature: Is an abstract microservice which takes care of reading
the current temperature from a device. The actual implementation of this
microservice depends on the communication protocol and the authentication
method (e.g., command sent via a secure communication channel).

– Close Connection: Is an abstract microservice which takes care of closing
the communication to an IoT device. The actual implementation of this
microservice depends on the communication protocol and the authentication
method.

The particular implementations of the above mentioned microservices are
provided by the IoT device/system manufacturer. This allows Service Providers
to define services independent of the used hardware. For this example, we consi-
der that a connection to the IoT devices can be established via Bluetooth, WiFi,
or via Zigbee. For each of these communication protocols, we consider two pos-
sible authentication methods/protocols: one based on asymmetric cryptography
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Table 1. Overview of the constraints for each microservice

Input Parameter Output Before Node After Node

Connect* deviceAddress connection - -

Authenticate* connection channel - -

Read Temperature channel temperature Close Connection -

Close Connection - - - -
* Each implementation defines its own input and output types to allow an au-

tomatic orchestration. For illustration, only the abstract input / output types
are shown in this table.

(like Transport Layer Security (TLS)), and one based on symmetric crypto-
graphy (like Secure Channel Protocol (SCP)). We will not look into the details
of the Read Temperature or Close Connection webservices. The constraints of
the individual microservices are illustrated in Table 1. Note that each concrete
implementation of the abstract microservice can define different input and out-
put parameter. For example, a webservice connecting to the device via WiFi
may require an IP address and a port number as input, while a connection via
Bluetooth may only need the Bluetooth device address as input. In addition,
by using different output types, the orchestrator can take care of selecting the
correct subsequent microservice in case there are execution dependencies. For
example, if a specific authentication method requires a dedicated connection
interface, the connection interface could produce an output that can only be
consumed by this special authentication method. Other possibilities would be
to define a more fine grained constraint model in which each concrete service
implementation defines specific Before Node and After Node constraints.

The desire of this Microflow is measuring the temperature which is the output
data of the Read Temperature microservice. Thus, the path finding algorithm is
able to calculate a Microflow fulfilling the desire: Read Temperature requires
a channel as input parameter. Consequently, Authenticate * must be executed
prior to reading the temperature, which requires Connect * to be executed be-
fore to establish a connection. And finally, after reading the temperature value
– and returning it to the Service Provider – the Close Connection webservice
has to be called. Noteworthy is the input parameter of the Connect * webser-
vice: The deviceAddress must be provided by the Service Platform which keeps
track of all the registered devices in the network, as well as their capabilities.
The generated Microflow is illustrated in Figure 4. For Microflow execution, the
Microflow Orchestrator receives a list of devices, calculates the path for each
device to produce the desire (the temperature value), rates the generated va-
riants according to the path weight, and selects the path with the lowest path
weight. Various strategies can be used in case multiple paths lead to the same
path weight, like round-robin or randomly choosing a device.

In case a failure happened during the execution of the Microflow, error reco-
very strategies need to be implemented. In case of IoT use-case, devices tend to
terminate connection unexpectedly due to bad signal strength, power failures, or
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similar issues. Error recovery strategies can be quite complex, especially if some
of the previous execution steps need to be reverted in order to not leave the
network in an unstable state. In the context of this example, the strategies can
be as simple as a retry mechanism. This means that the current webservice is
executed a second time, or the whole Microflow is restarted at the start node. In
case a retry also did not result in a successful process execution, the Microflow
Orchestrator chooses an alternative route (e.g. measuring the temperature via
a different device). If all strategies have failed, the Service Provider (i.e., the
actual service implementation) is notified via an exception. As such, alternative
error-recovery strategies can be implemented on this level as well.

Last but not least, we will shortly discuss the impact of using different IoT
devices in a more complex setup and how this impacts the service orchestra-
tion: The IoT network consists of various different devices. A number of devices
is battery powered, each device can only support one communication protocol,
and the equipped temperature sensors are of varying quality. To model these
additional constraints, each webservice is annotated with additional meta-data
used for path calculation, like: energy consumption, execution time, sensor accu-
racy, and others. Each of these categories can be individually weighted: If the
service requires a highly accurate temperature value, accuracy can be weighted
more heavily then others, or if the field of application requires highly energy
efficient implementations, energy consumption can be rated more heavily. In the
current state of the implemented framework, these path weights are not updated
automatically, but only manually by a user, or system administrator. In future
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work, we want to investigate possible solutions on how to update these weights
automatically by making use of e.g., observed system properties like the recei-
ved signal strength (to enable or disable communication protocols), the battery
state, and others.

To summarize the examples above, the Microservice Orchestrator takes care
of identifying the registered IoT devices. During Microflow execution, the Me-
asure Temperature Microflow is expanded with context specific executions. In
case a node is not reachable during webservice execution, error-recovery strate-
gies are used which may trigger the path finding algorithm a second time, finding
an alternative node to get the room temperature. The presented examples high-
light, that the approach helps to create an abstraction for service developers to
access functionality of IoT devices without the need of developing vendor specific
code. By using complex mechanics for adapting path weights, the system can be
optimize according to different strategies, like power consumption or quality of
service.

While we heavily discussed microservice orchestration and Microflow execu-
tion, we only gave little information on how to create constraint models and
how to benefit from variability modeling. In most of the cases, a Service Provi-
der is not interested to create such constraint models, nor cope with execution
sequences on the microscopic level. The Service Provider is usually only inte-
rested in reading or setting values of the IoT network. Thus, orchestration of
webservices is mostly relevant on a higher abstraction level. For the microscopic
process level, the Service Platform usually provides convenience models which
can also be used as templates for custom services. In this case study, we app-
lied our framework for modeling business process variability [2], but instead of
limiting the usage to order processes, we extended it with runtime aspects and
custom model transformation engines: The above example was derived from a
variability model which is partially illustrated in Figure 5: The feature model
shows a generic model of Microflows which are capable of measuring either the
temperature or the luminous intensity. Features on higher levels represent ab-
stract webservices (i.e. abstract microprocesses), while child features (i.e., the
leafs in the tree) represent the actual implementations.

The Measure Temperature Microflow – which was used as example in this
case study – was created by selecting the Temperature feature and transfor-
ming the model. Other selections – like the connection method or the particular
authentication method – are not chosen during model transformation, but are
selected during Microflow invocation. To allow a transformation of the feature
model into the constraint model defined in Table 1, additional information has to
be annotated to the feature model: For each feature, we define input parameter
and output values. Before Node, After Node and Exclude Node constraints can
be partially derived by the dependencies between the specific features: A requi-
res dependency indicates a dependency on the sequence of execution. However, a
pure feature model does not clearly define which feature has to be executed prior
to other ones. As such, we additionally annotate Before Node and After Node
constraints if they cannot be derived based on input/output value dependencies.
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Measure X

Connect Authenticate Establish Secure Session Read X Close

WiFi Bluetooth Zigbee Asymmetric Symmetric Authenticated Unauthenticated

Temperature Luminous Intensity

Mandatory Optional Alternative

Requires

Fig. 5. Extract of the feature model that was used to derive the Microflow constraints
of the Measure Temperature Microflow.

Consequently, the Microflow constraint model can be derived by applying simple
model transformation rules. Thus, changes to the feature model are automati-
cally propagated to the microservices and respectively to the microprocesses.
This has the positive side effect that also development teams get a view on
where and how their actual implementations are used within a business process.
In addition, a strong connection is built between the process modeling team and
the implementation team [2].

6 Conclusion

Today’s industry is heavily driven by the digital transformation, short develop-
ment cycles and highly flexible requirements from the market. We proposed a
framework to use SPLE techniques for a combined variability modeling of BP
models and software architectures. This leads to an integrated view of product
variability from a business perspective as well as from a technical perspective.

In addition, we have shown how concepts of dynamic Microflow planning
and execution allows workflow-based variability and WS orchestration during
runtime. As illustrated in the case study, this is especially useful for industries
providing service platforms such as IoT, where a number of service providers
are publishing new WS. These WS can also make use of abstract microservi-
ces provided by the service platform to support access to the functionality of
IoT devices in an abstract way, allowing third parties to develop microservices
independent of the used infrastructure.

Future work will focus on extending the support for microservice orchestra-
tion, introducing advanced verification and validation techniques and a more
fine-grained model to dynamically calculate path weights.
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