Refine
Document Type
- Article (7)
Language
- English (7)
Has Fulltext
- no (7)
Is part of the Bibliography
- yes (7)
Keywords
Institute
- Chemie (7)
Capillary electrophoresis (CE) offers fast and high-resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user-friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano-electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE-MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two-dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE-modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.
Online mass spectrometry of CE (SDS)-separated proteins by two-dimensional capillary electrophoresis
(2019)
Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) is the fundamental technique for protein separation by size. Applying this technology in capillary format, gaining high separation efficiency in a more automated way, is a key technology for size separation of proteins in the biopharmaceutical industry. However, unequivocal identification by online mass spectrometry (MS) is impossible so far, due to strong interference in the electrospray process by SDS and other components of the SDS-MW separation gel buffer. Here, a heart-cut two-dimensional electrophoretic separation system applying an electrically isolated valve with an internal loop of 20 nL is presented. The peak of interest in the CE (SDS) separation is transferred to the CZE-MS, where electrospray-interfering substances of the SDS-MW gel are separated prior to online electrospray ionization mass spectrometry. An online SDS removal strategy for decomplexing the protein-SDS complex is implemented in the second dimension, consisting of the co-injection of organic solvent and cationic surfactant. This online CE (SDS)-CZE-MS system allows MS characterization of proteoforms separated in generic CE (SDS), gaining additional separation in the CZE and detailed MS information. In general, the system can be applied to all kinds of proteins separated by CE (SDS). Here, we present results of the CE (SDS)-CZE-MS system on the analysis of several biopharmaceutically relevant antibody impurities and fragments. Additionally, the versatile application spectrum of the system is demonstrated by the analysis of extracted proteins from soybean flour. The online hyphenation of CE (SDS) resolving power and MS identification capabilities will be a powerful tool for protein and mAb characterization. Graphical abstract Two-dimensional capillary electrophoresis system hyphenated with mass spectrometry for the characterization of CE (SDS)-separated proteins. As first dimension, a generic and high MS-interfering CE (SDS) separation is performed for size separation. After heart-cut transfer of the unknown CE (SDS) protein peak, via a four-port nanoliter valve to a volatile electrolyte system as second dimension, interference-free mass spectrometric data of separated mAb fragments and soybean proteins are obtained.