Elektronik und Informatik
Refine
Document Type
- Conference Proceeding (84)
- Article (31)
- Part of a Book (5)
- Patent (5)
- Book (3)
- Report (3)
- Doctoral Thesis (1)
- Master's Thesis (1)
- Other (1)
Language
- English (111)
- German (20)
- Multiple languages (2)
- Chinese (1)
Keywords
Institute
Path planning for an identification mission of an Autonomous Underwater Vehicle in a lemniscate form
(2018)
Two-Level Classification of Chronic Stress Using Machine Learning on Resting-State EEG Recordings
(2020)
Online Monitoring System for Photovoltaic Systems Using Anomaly Detection with Machine Learning
(2019)
Self-Management of Diabetes Mellitus Patients Using mHealth Applications: A Systematic Review
(2020)
Lower bounds on the sum of 25th-powers of univariates lead to complete derandomization of PIT
(2020)
A Systematic Literature Review of Medical Chatbot Research from a Behavior Change Perspective
(2020)
Industry 4.0 production comprises complicated highly automated processes. However, human activities are also a crucial component of these processes, e.g., for machine main- tenance. Task assignment of human resources in this domain is challenging, as many factors have to be taken into account to ensure effective and efficient activity execution and satisfy special conditions (like worker safety). To overcome the limita- tions of current Business Process Management (BPM) Systems regarding activity resource assignment, this contribution provides a BPM-integrated approach that applies fuzzy sets for activity assignment. Our findings suggest that this approach can be easily applied to complex production scenarios, while providing efficient performance even with a large number of concurrent activity assignment requests. Additionally, our evaluation shows its potential for improved work distribution which can lead to cost savings in Industry 4.0 production processes.
Leveraging Augmented Reality to Support Context-Aware Tasks in Alignment with Business Processes
(2021)
The seamless inclusion of Augmented Reality (AR) with Business Process Management Systems (BPMSs) for Smart Factory and Industry 4.0 processes remains a challenge. Towards this end, this paper contributes an approach integrating context-aware AR into intelligent business processes to support and guide manufacturing personnel tasks and enable live task assignment optimization and support task execution quality. Our realization extends two BPMSs (Camunda and AristaFlow) and various AR devices. Various AR capabilities are demonstrated via a simulated industrial case study.
A Context and Augmented Reality BPMN and BPMS Extension for Industrial Internet of Things Processes
(2022)
In the context of Industry 4.0, smart factories enable a new level of highly individualized and very efficient production, driven by highly automated processes and connected Industrial Internet of Things (IIoT) devices. Yet the IIoT process context, crucial for operational process enactment, cannot be readily represented in processes as currently modeled. Despite automation progress, manual tasks performed by humans (such as maintenance) remain, and while complicated tasks can be supported by Augmented Reality (AR) devices, they remain insufficiently integrated into global production processes. To seamlessly integrate process automation, IIoT context, and AR, this paper contributes BPMN-CARX, a Context and Augmented Reality eXtension (CARX) for BPMN (Business Process Model and Notation) and the CARX Framework, which enables AR and IIoT context integration with existing Business Process Management Systems (BPMSs). An Industry 4.0 case study demonstrates its feasibility and applicability.
Production processes in Industry 4.0 settings are usually highly automated. However, many complicated tasks, such as machine maintenance, must be executed by human workers. In current smart factories, such tasks can be supported by Augmented Reality (AR) devices. These AR tasks rely on high numbers of contextual factors like live data from machines or work safety conditions and are mostly not well integrated into the global production process. This can lead to various problems like suboptimal task assignment, over-exposure of workers to hazards like noise or heat, or delays in the production process. Current Business Process Management (BPM) Systems (BPMS) are not capable of readily taking such factors into account. There- fore, this contribution proposes a novel approach for context- integrated modeling and execution of processes with AR tasks. Our practical evaluations show that our AR Process Framework can be easily integrated with prevalent BPMS. Furthermore, we have created a comprehensive simulation scenario and our findings suggest that the application of this system can lead to various benefits, like better quality of AR task execution and cost savings regarding the overall Industry 4.0 processes.
Automated Software Engineering Process Assessment: Supporting Diverse Models using an Ontology
(2013)
Red Teaming
(2019)
Zu Beginn der Arbeit wurden die theoretischen Grundlagen zu Penetrationstest, Audit und Red Teaming beschrieben. In den rechtlichen Rahmenbedingungen wurden betroffene Gesetze unter die Lupe genommen.
Anschließend wurde eine Marktforschung bestehend aus einer Primär- und einer Sekundärmarkforschung durchgeführt. Die Sekundärforschung beschreibt die Angebote und Dienstleister, die auf dem Markt Red Teaming anbieten. Daraus wurden Unternehmen aus dem DACH-Raum für die Interviews der Primärforschung ausgewählt.
Das Red Team muss ein vorher definiertes Ziel erreichen. Das Red Team führt in Abstimmung mit dem White Team Angriffe durch, die technische, physische und menschliche Komponenten betreffen können. Welche Komponenten verwendet werden, unterscheidet sich nach Projekt und Dienstleister. Das Blue Team hat die Aufgabe, die Angriffe zu erkennen und darauf zu reagieren.
Mit dem gesammelten theoretischen Wissen und den Interviews wurden die Methoden verglichen und eine Methodik zur Einordnung erstellt. Das Red Teaming, Penetrationstests und Audits sind für unterschiedliche Situationen nützlich. Um die Auswahl zu erleichtern, ist es sinnvoll, die Ziele zu definieren, die mit dem Test erreicht werden sollen.
Als dritter Indikator ist der Scope hilfreich, da ein Penetrationstest eine technische Prüfung darstellt und beim Audit oder Red Teaming oftmals eine ganzheitliche Betrachtung der Organisation erfolgt.
Im letzten Abschnitt wird eine praktikable Methode zur Durchführung von Red Teaming beschrieben. Hierzu wurden Thesen auf Grundlage des gesammelten Wissens aufgestellt.
Die Arbeit endet mit einem Fazit und den Zukunftsaussichten von Red Teaming.
Speichereinsatz versus Netzausbau - Methoden der Bürgerkommunikation am Beispiel des Projekts NEOS
(2020)
Can one 3D print a laser?
(2020)
IT-Sicherheit
(2018)
Statistische Versuchsplanung
(2021)
Design and Implementation of a Plug-In Repetitive Controller for a High Precision Axis System
(2021)
VR Live Motion Capture
(2021)
Learning for E-Learning
(2020)
Enterprise Architecture (EA) Frameworks (EAFs) have attempted to support comprehensive and cohesive modeling and documentation of the enterprise. However, these EAFs were not conceived for today’s rapidly digitalized enterprises and the associated IT complexity. A digitally-centric EAF is needed, freed from the past restrictive EAF paradigms and embracing the new potential in a data-centric world. This paper proposes an alternative EAF that is digital, holistic, and digitally sustainable - the Digital Diamond Framework. D2F is designed for responsive and agile enterprises, for aligning business plans and initiatives with the actual enterprise state, and addressing the needs of EA for digitized structure, order, modeling, and documentation. The feasibility of D2F is demonstrated with a prototype implementation of an EA tool that applies its principles, showing how the framework can be practically realized, while a case study based on ArchiSurance example and an initial performance and scalability characterization provide additional insights as to its viability.
Databases are becoming an ubiquitous and integral part of most software as the data era and the Internet of Everything unfolds. Alternative database types such as NoSQL grow in popularity and allow data to be stored and accessed more simply or in new ways. Thus, software developers, not just database specialists, are more likely to encounter and need to deal with databases. Virtual Reality (VR) technology has grown in popularity, yet its integration in the software development tool chain has been limited. One potential application area for VR technology that has not been sufficiently explored is database-model visualization. This paper describes Virtual Reality Immersion in Data Models (VRiDaM), a generic database-model approach for visualizing, navigating, and conveying database-model information interactively. It describes and explores both native VR and WebVR solution concepts, with prototypes showing the viability of the approach.
DEKXTROSE: An Education 4.0 Mobile Learning Approach and Object-Aware App Based on a Knowledge Nexus
(2020)
The exponential growth in knowledge coupled with the decreasing knowledge half-life creates a challenging situation for educational programs - particularly those preparing software engineers for their very dynamic high-technology field. Teachers in high technology education areas are challenged in selecting and making relevant knowledge intuitively accessible to students, especially with regard the highly dynamic digital and software technologies. This paper contributes a knowledge nexus-based multimedia approach aligned with Higher Education 4.0 for creating learning apps on mobile devices that support multiple didactic models, leverage intrinsic curiosity and motivation, support gamification, and enable digital collaboration. Object recognition is used to trigger learning paths, and various didactic methods are supported via workflow-like learning flows to support group or team-based learning. A prototype app was realized to demonstrate its feasibility and an empirical evaluation in software engineering shows the didactic potential and advantages of the approach, which can be readily generalized and applied to the arts, sciences, etc.
DEKXTROSE: An Education 4.0 Mobile Learning Approach and Object-Aware App Based on a Knowledge Nexus
(2020)
The exponential growth in knowledge coupled with the decreasing knowledge half-life creates a challenging situation for educational programs - particularly those preparing software engineers for their very dynamic high-technology field. Teachers in high technology education areas are challenged in selecting and making relevant knowledge intuitively accessible to students, especially with regard the highly dynamic digital and software technologies. This paper contributes a knowledge nexus-based multimedia approach aligned with Higher Education 4.0 for creating learning apps on mobile devices that support multiple didactic models, leverage intrinsic curiosity and motivation, support gamification, and enable digital collaboration. Object recognition is used to trigger learning paths, and various didactic methods are supported via workflow-like learning flows to support group or team-based learning. A prototype app was realized to demonstrate its feasibility and an empirical evaluation in software engineering shows the didactic potential and advantages of the approach, which can be readily generalized and applied to the arts, sciences, etc.
Software models in the Unified Modeling Language (UML) can been created or automatically reverse-engineered and used for quickly gaining structural insights into larger, legacy, or unfamiliar software. But as the size, structural complexity, and interdependencies between software components in larger systems grows, two-dimensional viewing and modeling has limitations, and new ways of visualizing larger models and numerous associated diagrams of different types are needed to intuitively convey structural and relational insights. To investigate the feasibility of using Virtual Reality (VR) to create an immersive UML-based software modeling experience, this paper contributes a VR solution concept for visualizing, navigating, modeling, and interacting with software models using UML notation. An implementation shows its feasibility while an empirical evaluation highlights its potential.
A complex and dynamic IT landscape with evermore digital elements, relations, and content presents a challenge for Enterprise Architecture (EA). Disparate digital repositories, including Knowledge Management Systems (KMS), Enterprise Content Management Systems (ECMS), and Enterprise Architecture Tools (EAT), often remain disjointed. And even if integrated, insights remain hindered by current visualization limitations, making it increasingly difficult to analyze, manage, and gain insights into the digital enterprise reality. This paper contributes our nexus-based Virtual Reality (VR) solution concept VR-EA+TCK that enhances and amalgamates EAT with KMS and ECMS capabilities. By enabling visualization, navigation, and interaction in VR with dynamically-generated EA diagrams, knowledge/value chains, and KMS/ECMS digital entities, it sets the groundwork for stakeholder-accessible grassroots enterprise modeling/analysis and future collaboration in a metaverse. An implementation shows its feasibility, while a case study demonstrates its potential using enterprise analysis scenarios: ECMS/KMS coverage in the EA, business processes, knowledge chains, Wardley Maps, and risk analysis.
As the size of software program code bases in software development projects increases, insight into and comprehension of their underlying dependency structures presents a challenge for programmers. The increasing availability of virtual reality (VR) systems brings VR-based visualization of program code structures into practical reach for software developers and could support program comprehension and insight. However, the complete visual immersion with VR presents a cognitive burden and potential distractions. Applying gamification to such a VR visualization capability has hitherto been insufficiently investigated as to its potential motivation and program comprehension factors. This paper describes and evaluates a VR digital gamification approach for program code called VR Gamified Immersion in Software structures (VR-GaImS), which applies digital gamification to a multi-metaphor VR visualization of software program structures. The results of a preliminary empirical investigation utilizing our prototype indicate its potential to increase enjoyment and motivation, focus attention, and encourage the exploration of software structures.
While Virtual Reality (VR) has been applied to various domains to provide new visualization and interaction capabilities, enabling programmers to utilize VR for their software development and maintenance tasks has been insufficiently explored. In this paper, we present the Hyper-Display Environment (HyDE) in the form of a mixed-reality (HyDE-MR) or virtual reality (HyDE-VR) variant respectively, which provides simultaneous multiple operating system window visualization with integrated keyboard/mouse viewing and interaction using MR or in pure VR via a virtual keyboard. This paper applies HyDE in a software development case study as an alternative to typical non-VR Integrated Development Environments (IDEs), supporting software engineering tasks with multiple live screens in VR as an augmented virtuality. The MR solution concept enables programmers to benefit from VR visualization and virtually unlimited information displays while supporting their more natural keyboard interaction for basic code-centric tasks. Thus, developers can leverage VR paradigms and capabilities while directly interacting with their favorite tools to develop and maintain program code. A prototype implementation is described, with a case study demonstrating its feasibility and an initial empirical study showing its potential.
VR-EA: Virtual Reality Visualization of Enterprise Architecture Models with ArchiMate and BPMN
(2019)
The digital transformation occurring throughout enterprises results in an increasingly dynamic and complex IT landscape. As the structures with which enterprise architecture (EA) deals become more digital, larger, complex, and dynamic, new approaches for modeling, documenting, and conveying EA structural and relational aspects are needed. The potential for virtual reality (VR) to address upcoming EA modeling challenges has as yet been insufficient- ly explored. This paper contributes a VR hypermodel solution concept for visu- alizing, navigating, interacting with ArchiMate and Business Process Modeling Notation (BPMN) models in VR. An implementation demonstrates its feasibil- ity and a case study is used to show its potential.
The digital transformation occurring in enterprises results in an in- creasingly dynamic and complex IT landscape that in turn impacts enterprise architecture (EA) and its artefacts. New approaches for dealing with more com- plex and dynamic models and conveying EA structural and relational insights are needed. As EA tools attempt to address these challenges, virtual reality (VR) can potentially enhance EA tool capabilities and user insight but further investigation is needed in how this can be achieved. This paper contributes a VR solution concept for visualizing, navigating, and interacting with EA tool dynamically-generated diagrams and models using the EA tool Atlas. An im- plementation shows its feasibility and a case study using EA scenarios is used to demonstrate its potential.